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Abstract

Parallel and distributed processing are no longer the exclusive realm
of supercomputers. The growing prevalence of systems with multiple pro-
cessing units brings parallel hardware to commodity computers. Parallel
hardware cannot be fully utilized unless running parallel software, which
in turn depends on the operating system’s ability to support various, of-
ten conflicting scheduling requirements. This proposal describes research
toward achieving a fully flexible autonomous operating system (OS), that
seamlessly supports the entire range of current and future applications:
serial, multimedia, interactive, distributed, and parallel.

Problem Description

Computer manufacturers are constantly striving to increase the performance of
their products. By enlarging cache sizes, improving memory bandwidth and la-
tency, clocking processors at higher speeds, and incorporating new architectural
features, computer performance grows at an exponential rate. Nevertheless, we
are currently witnessing a slowing down of this process, and truly innovative
architectural features are becoming increasingly rare. For example, the rate of
increase in processor speeds has declined over the last few years [35, B4]. Even
Moore’s Law [40], which predicts the doubling of processors’ transistor count
every 18 months, is expected to lose its validity sometime in this decade or the
next, because of increasing power requirements [2, 26, 29, 3T].

To try and sustain the same rate of growth in computer performance that
has been witnessed in the past, manufacturers have been turning to parallelism
[28, B3, 34, 61, 62]. One example is symmetric multiprocessing (SMP), which
in the simplest instantiation consists of two or more main processors (CPUs)
running in one box [38]. Recently, one manufacturer began offering “deskside
workstations”, supporting up to 96 processors in one box, with no special cooling
requirements [48]. Other forms of in-box parallelism include superthreading
[66], Simultaneous Multithreading (SMT) and hyperthreading [13, 67], and chip
multiprocessors (CMP) [27].

The most actively developed form of parallelism is multicore chips, which
allow a single chip die to contain multiple processors, and will soon be offered



by all major CPU manufacturers [23, B6], Bl 61]. Processor roadmaps plan
for 2-, 4-, and 8-core processors in the near future, with an additional layer of
parallelism by including several such chips in one node [32, 33]. These computers
are increasingly being used for a variety of applications, running the gamut from
office applications to heavily loaded server applications.

The advances toward commodity parallel hardware are meaningless without
the software to use it [62]. Redundant computing capability does not improve
the performance of serial programs. What it does allow, however, is the use of
concurrent serial and interactive programs, distributed programs, parallel pro-
grams, and combinations thereof. Many software authors already incorporate
support for such architectures in their performance-hungry applications, e.g.
graphic design and animation, web servers, and database engines.

With the newfound versatility in classes of programs that run on low- and
mid-end computers comes the connoted requirement for OS pliability, and in
particular regarding process scheduling policies [6, B7, B7, 60]. For example,
interactive programs such as video players require near-real-time responsiveness
from the OS to avoid image skipping [14) 24}, 45]; tightly coupled parallel pro-
grams require all the synchronizing processes to be coscheduled concurrently
[17, 22]; distributed programs have minimal interaction with other processes
and require less coordination [Bl [65]; and serial (sequential) programs pose no
scheduling demands other than the normal local considerations, such as fairness
and resource overlapping.

Unfortunately, the significant advances in hardware were not matched by
similar performance advancements in OSs [49]. Most common desktop operat-
ing systems, such as Windows, GNU/Linux, and MacOS, offer only rudimen-
tary support for parallel hardware, and little or no support for parallel and
distributed software. Most desktop OSs use a simple scheduling scheme that
has changed very little in 30 years [15], 57]. None of these operating systems of-
fers mechanisms to explicitly or implicitly identify the special requirements of all
types of programs and schedule the machine’s resources accordinglyﬂ The lack
of support for collaborative programs leads to significant degradation in their
performance and to underutilization of the computer’s resources [17, 21]. This
predicament in turn hinders the widespread adoption of collaborative programs
in the desktop environment, rendering the advances in hardware paralleliza-
tion largely moot, and creating a cycle of stopped development. Furthermore,
scheduling policies which are tailored specifically for parallel jobs are exposed to
the woes of Amdhal’s Law [3] (which determines that the scalability of a parallel
program is limited by its serial parts) rendering the machine again underutilized.

To address these problems, the goal of this research is to develop performance-
oriented, practical scheduling policies for commodity systems that support any
class of applications and workloads.

IThere is a significant body of work concentrating on implicit or explicit identification of
multimedia tasks, and some work on identification of parallel/distributed tasks [4), 5, &, [,
12, [15), [18), 19}, 24}, &6, B1), 69, [[2]. However, these studies make a clear distinction between
commodity and high-end systems, which may no longer be always valid.



Goals and Objectives

The vision behind this proposal is a desktop/workstation operating system that
automatically identifies the scheduling requirements of any type of process, and
employs optimal scheduling heuristics to match those needs. To this end, the
successful outcome of this research will be a set of kernel scheduling policies
that satisfy the following objectives:

Performance: The main drive behind this proposal is the inadequate perfor-
mance of certain kinds of processes with commodity operating systems, in
particular those of parallel and distributed programs. This research should
provide the operating system with mechanisms to identify scheduling per-
formance problems, as well as the best-known policies to successfully deal
with these problems.

Transparency: One of the important differences between commodity and spe-
cialized systems is the degree of operator involvement in configuration and
tuning. Unlike a supercomputer OS, a commodity system should require
as little user intervention and expertise as possible while still address-
ing changing needs. Several OS mechanisms were proposed in the past
to optimize the scheduling of interactive processes or parallel processes
with user-supplied hints [4} 0], T2} 24] @6, B1]. The philosophy behind this
proposal is that the OS should monitor processes to obtain its own infor-
mation on scheduling requirements, eliminating or reducing the need for
the user to do so. It should then be flexible enough to allow for any type
of application to run efficiently alongside different applications.

Expandability: Job scheduling is an active field of research, both for the com-
modity and high-end environments [16]. Scheduling policies are continu-
ously proposed, developed, and investigated. To allow an OS to be current
with recent developments, as well as adaptive to future ones, it should al-
low for a simple mechanism of “plugging-in” and evaluating new schedul-
ing policies. Moreover, by designing expandable scheduling mechanisms
for the OS from the start, this research can also provide a fertile ground
for future studies by other researchers that can benefit from the available
infrastructure.

Portability: Modifying operating systems is a difficult task, often resulting in
nonportable code that only applies to a certain OS or even a specific OS
version. The scheduling policies and mechanisms stemming from this work
must be as general and separate from specific implementations as possible,
possibly relying on external kernel modules and minimal interfaces.

Scalability: Since the trend is to increase the level of parallelism per node, an
OS should scale gracefully with the number of processors, while avoiding
the use of locks to the largest extent possible.



Scope of Research

The following is a list of issues to be addressed, in approximate proposed chrono-
logical order. Not all of the topics are expected to be studied at the same level
of depth. It should be noted that the extensively studied and more theoretical
topics of scheduling, such as offline scheduling, are not in the scope of this work.

Benchmarks, Metrics, and Evaluation

One of the main methodological challenges in the evaluation and development
of online scheduling algorithms is the lack of standard metrics and benchmarks.
More often than not, scheduling studies focus on very specific workloads that
yield results that cannot be generalized to (or fare less favorably when compared
to) many other workloads. Before developing novel and improved scheduling
techniques, there is a need for a more general way of measuring any current
problems and future improvements. To this end, a set of benchmarks and asso-
ciated metrics needs to be developed that is meaningful in a large spectrum of
scheduling scenarios and workloads. The premise behind this set will be that
for different workloads, and even for different applications, some metrics have
meaning, and others not. For example, slowdown is a useful metric for batch
processes, but useless for continuous media. With this in mind, any benchmark
set needs to be comprehensive enough to capture workloads and metrics that
are meaningful to a large audience.

Evaluation of scheduling algorithms can be done both in a simulated envi-
ronment, for ease of development and parameter space study, or in actual im-
plementation, for realistic exposure tuning and performance issues. Simulations
might possibly employ tools such as the Bossa scheduler simulation platform
[6], the SimOS simulator [53, [Z1] or User Mode Linux [68]. Actual evalua-
tions however will require different tools. To make meaningful measurements
and statements on OS performance, extremely precise and low-latency perfor-
mance measurement techniques need to be employed. Such techniques may in-
clude using hardware counters and specialized performance measurement tools
[14, B2, [70]. Furthermore, having a comprehensive set of measurement tools,
existing OS schedulers can be evaluated and compared to each other and to
novel schedulers.

Scheduling Policies and Techniques

The main thrust of this work is the development of novel scheduling policies that
can expose the full potential of emerging commodity platforms and work equally
well with a plethora of different applications and workload characteristics. The
following six principles, which are not widespread in contemporary schedulers,
will be studied in the context of the hardware and software trends described
above.



1. Cooperative scheduling: Scheduling multiple processes together on dif-
ferent processors can have significant performance repercussions. Instead
of an expected speedup resulting from parallelism, processes can actu-
ally suffer from slowdown when mis-scheduled [I0, BY]. One example is
when competing, memory-intensive processes create severe contention on
shared caches and memory buses [43]. Another example is embodied in
fine-grained synchronous processes that suffer significant slowdowns if not
coscheduled [I7]. The goal of cooperative scheduling is to maximize the
collaboration between those processes that benefit from it, while minimiz-
ing the contention between mutually competitive processes. The basic idea
is that the OS continually tries to coschedule different processes together,
and observes the effect on their progress, then schedules processes in the
configurations that are most beneficial to them. The progress of a process
can be measured by various metrics, that need to be studied and selected
from, and that might employ fine-grained hardware counters. Examples
of such possible metrics include CPU time and cache misses [55], or the
joint “symbiotic throughput” [568] and “weighted speedup” [60], wherein the
scheduler also has an initial phase of testing out different combinations.

2. Classification of processes: The OS can use an abstraction level to as-
sist in scheduling decisions by classifying processes based on their schedul-
ing and synchronization requirements. This approach proved itself to be
highly effective on various scenarios in the parallel job scheduling arena
[21), 22]. The same principles can be generalized to include the synchro-
nization needs in the commodity system, of parallel and serial processes
alike. For example, continuous media processes can be classified as such,
and the scheduling algorithm adjusted so that they receive control of the
CPU every time they need to express the next frame of output in a timely
manner, and no more. Another way of looking at multimedia processes is
as fine-grained synchronous parallel processes running contemporaneously.
With this perspective, multimedia processes comprise producers and con-
sumers (e.g. one processes to read raw video data, another to convert the
data to the display parameters, and a third to put the data on screen, all
communicating at 30 frames per second). As such, these processes exhibit
the same characteristics of classic parallel programs, and impose similar
synchronization requirements [72]. The classification is again obtained by
measuring various process metrics, including the interaction of each pro-
cess with other processes and I/O devices. This classification could, and
probably should, be revisited over time, to account for changing behavior
of applications.

3. Adaptabilty: Adaptability addresses changing workload and applica-
tion characteristics. [22, B3], and can be expressed in adaptive times-
lice frequency and length, as well as changing scheduling policy. For
example, most contemporary OSs use fixed-length timeslices, which hin-
ders time-sensitive, multimedia, synchronous, and parallel applications
[24), BT, 45, B0]. Contemporary hardware allows for timeslicing at much



finer granularities than when multiprogramming was first developed [14].
A better approach therefore might be to allow for dynamic timeslices,
based on the application requirements. For example, if a media player
requires exactly 0.2 ms to display a frame every 1/30 s, it could receive a
dedicated processor at that frequency, for exactly 0.2ms, thus ensuring
smooth playback while avoiding the time wasted on overly long times-
lices. Another example might include a parallel program that needs to
be gang-scheduled across several processors. The scheduler can allocate
relatively long timeslices dedicated for the program, and avoid disruptive
timer interrupts for the duration of the timeslice execution.

. Scheduling memory: Most applications tend to retain their character-
istic behavior over time and across runs. For example, media players,
technical and graphical processing applications, and download managers
tend to have similar requirements from the OS across runs, even if their
data changes. Therefore, an OS that maintains a profile of applications’
scheduling characteristics in nonperishable memory could potentially make
correct scheduling decisions promptly. Naturally, characteristics could
change over time or across runs, and the OS needs to recognize these
changes and adjust the scheduling accordingly. But for the large majority
of cases, scheduling memory might significantly decrease the time the OS
spends learning the applications and finding an appropriate scheduling
policy.

. Tuning-free operation: The choice of scheduling policy along with the
parameters used by the policy can conceivably be adaptive and adjust to
different types of architectures and workloads. The philosophy remains
that users should not be required to tune any parameter, and yet the OS
will be able to make different scheduling decisions based on many factors.
Examples of these factors include different types of parallelism (e.g. hy-
perthreading vs. multicore, or single-processor), architectural constraints
such as power consumption [44] or memory limits (e.g., synchronous jobs
must avoid swapping at any reasonable cost [[]), and application require-
ments such as prioritized network or screen access [59].

. Scalability: Parallel applications are limited in their scalability and ef-
fective utilization by many factors, including their serial parts [3] and
network performance [25]. By gracefully handling a combination of serial
and parallel processes (that can dynamically change over time), the OS
can avoid suffering from specific applications’ performance problems, while
increasing the system’s utilization as a whole. If future systems grow to
tens or hundreds of processors, scalability will only be attained if the gath-
ering and use of information remains as localized as possible. Ideally, even
with multiple processors, each processor will largely take care of its own
scheduling, with little sharing of information, and no global locks. This
principle also naturally leads to processor affinity, which in turn increases
cache efficiency.



Cache and Data Locality

Memory access costs and latency hiding are increasingly becoming critical per-
formance factors in computers, as processor clock speeds continue to grow at a
faster rate than memory performance. The problem is exacerbated with paral-
lelism. Running multiple programs on a single chip, on an SMP, or on any other
configuration where processors share any level of memory hierarchy raises con-
tention issues. For that data that is not shared, i.e. resides on separate memory
modules, locality issues rise. If scheduled incorrectly, different processes will be
competing for memory resources that would otherwise be dedicated to them. A
paradoxical situation may occur wherein running a parallel program results in
slowdown, rather than speedup [4, [IT], B0, 39, 60]. Schedulers for multicore and
SMT machines will need to be aware of all levels of parallel execution abstrac-
tion, from the thread, through the process, to the parallel program. As part
of the collaborative scheduling principle, this study will explore ways for novel
scheduling policies to incorporate memory performance considerations.

Heterogeneous and Energy-Aware Architectures

One research approach for future multicore architectures calls for heterogeneous
chips, comprising processors of different abilities, performance, and energy re-
quirement. For example, some manufacturers are designing multicore chips with
multiple math coprocessors or Java hardware processors [32]. Other examples
may include laptop chips, with low-power energy running for low-demand appli-
cations, and higher performance chips for bursts of computation [62]. It is likely
that the OS will play an important role in allocating these resources efficiently,
and will therefore have to factor the heterogeneity into its scheduling consid-
erations. One way in which energy and performance considerations might be
incorporated into the scheduling principles depicted above is via a cost function
that reflects the priorities of the specific application and/or architecture.

Transparent Support for Cluster Computing

High-performance computing is a dynamic field with a growth rate that out-
paces Moore’s Law [64]. Almost paradoxically, the most pronounced trend in su-
percomputing architecture in the last few years is the move toward commodity-
based, large-scale clusters. A large share of these clusters use commodity proces-
sors, running commodity operating systems. The OS requirements of supercom-
puters however can be far more demanding that those of commodity machines, in
terms of communication, synchronization, and noise elimination [17, 20, 50, 63].
There have been several attempts in the past to enhance commodity operating
systems with mechanisms for satisfying these needs [T}, B, 22, 2]. Some of these
ideas can be integrated into the classification principle described above, so that
the commodity OS automatically (and possibly with the addition of new system
calls) recognizes synchronization needs of parallel and distributed programs, and
attempts to schedule them accordingly. Such commodity OSs can be integrated
into a high-performance cluster with little or no modification.
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